MLOps Part 2 - Feature Engineering and Training
Previously, we have set up the main skeleton of our training pipeline using mlflow project and implemented a download
step component. Now let’s continue building the training pipeline.
Right now we are going to develop the feature engineering and training part. For the sake of simplicity, we are going to implement a bare minimum feature engineering for our model, because we are looking to focus our work on mlops. It is very possible to develop a more rigorous feature engineering step that results in much better model performance.
Develop split step
Let’s start with creating a new file that will split our downloaded data on wandb into a training part and testing part.
1 | touch nyc_airbnb/split_train_test.py |
Just like nyc_airbnb/get_data.py
, here we will build the logic to split our full dataset into a training and testing set. We do this early to safeguard our model from information leakage. Open the new file and put the following code into it.
./nyc_airbnb/split_train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92 import argparse
import logging
import sys
import os
import tempfile
import wandb
import pandas as pd
from sklearn.model_selection import train_test_split
sys.path.append(".")
from nyc_airbnb.utils.base_runner import BaseRunner
logging.basicConfig(
level=logging.INFO,
format="%(asctime)-15s %(levelname)s - %(message)s")
logger = logging.getLogger()
class SplitRunner(BaseRunner):
def __init__(self,
wandb_run,
test_size,
random_seed,
stratify_by):
super().__init__(wandb_run)
self.test_size = test_size
self.random_seed = random_seed
self.stratify_by = stratify_by
def split_train_test(self,
data: pd.DataFrame,
dir_name: str):
trainval, test = train_test_split(
data,
test_size=float(self.test_size),
random_state=int(self.random_seed),
stratify=data[self.stratify_by] if self.stratify_by != 'none' else None,
)
logger.info(f'train proportion contains {trainval.shape[0]}')
logger.info(f'test proportion contains {test.shape[0]}')
file_dict = {}
for data_frame, name in zip([trainval, test], ['trainval', 'test']):
logger.info(f"Uploading {name}_data.parquet dataset")
temp_file = os.path.join(dir_name, f'{name}_data.parquet')
data_frame.to_parquet(
temp_file,
index=False,
engine='pyarrow',
compression='gzip')
file_dict[f'{name}_data'] = temp_file
return file_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Split training dataset")
parser.add_argument("input_artifact",
type=str,
help="Reference to mlflow artifact of input data")
parser.add_argument("test_size",
type=str,
help="The size of test data")
parser.add_argument("random_seed",
type=str,
help="Random seed")
parser.add_argument("stratify_by",
type=str,
help="Column to use for stratification")
args = parser.parse_args()
runner = SplitRunner(
wandb.init(job_type="split_data"),
args.test_size,
args.random_seed,
args.stratify_by
)
dataset = runner.retrieve_dataset_artifact(args.input_artifact)
with tempfile.TemporaryDirectory() as temp_dir:
files = runner.split_train_test(dataset, temp_dir)
for key, file_name in files.items():
_ = runner.log_artifact(
f'{key}.parquet',
key,
f'{key} split of the dataset',
file_name
)
sys.exit(0)
The logic here is quite simple, we listen for arguments of which artifact name from wandb we need to process. The actual artifact name will be supplied by the main entry point. We then download it, split it using sklearn’s train_test_split
, and the result test and train split is logged back to wandb. The name of the artifact for both training portion and testing portion is also configurable, so that main entry point can further pass it on to the next component.
Now we have to strap this into MLproject
.
./MLproject
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 name: nyc_airbnb
conda_env: conda.yml
entry_points:
main:
parameters:
steps:
description: Comma-separated list of steps to execute (useful for debugging)
type: str
default: all
hydra_options:
description: Other configuration parameters to override
type: str
default: ''
command: "python main.py main.steps=\\'{steps}\\' $(echo {hydra_options})"
get_data:
parameters:
bucket:
description: OSS bucket where data is stored
type: string
object_path:
description: OSS object of dataset
type: string
artifact_name:
description: Name for the output artifact
type: string
artifact_type:
description: Type of the output artifact. This will be used to categorize the artifact in the W&B interface
type: string
artifact_description:
description: A brief description of the output artifact
type: string
command: "python nyc_airbnb/get_data.py
{bucket}
{object_path}
{artifact_name}
{artifact_type}
{artifact_description}"
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 split:
parameters:
input_artifact:
description: Artifact to split (a CSV file)
type: string
test_size:
description: Size of the test split. Fraction of the dataset, or number of items
type: string
random_seed:
description: Seed for the random number generator. Use this for reproducibility
type: string
default: 42
stratify_by:
description: Column to use for stratification (if any)
type: string
default: 'none'
command: "python nyc_airbnb/split_train_test.py
{input_artifact}
{test_size}
{random_seed}
{stratify_by}"
With MLproject
entry point set, we can now call this from main.py
with values retrieved from config.yaml
.
./main.py
1
2
3
4
5
6
7
8
9
10 import json
import mlflow
import tempfile
import os
import wandb
import hydra
from omegaconf import DictConfig
from dotenv import load_dotenv
load_dotenv()
1
2
3
4 _steps = [
'download',
'split'
]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# This decorator automatically reads in the configuration
def go(config: DictConfig):
# Setup the wandb experiment. All runs will be grouped under this name
os.environ["WANDB_PROJECT"] = config["main"]["project_name"]
os.environ["WANDB_RUN_GROUP"] = config["main"]["experiment_name"]
# Steps to execute
steps_par = config['main']['steps']
active_steps = steps_par.split(",") if steps_par != "all" else _steps
# Move to a temporary directory
with tempfile.TemporaryDirectory() as tmp_dir:
if "download" in active_steps:
# Download file and load in W&B
_ = mlflow.run(
hydra.utils.get_original_cwd(),
"get_data",
parameters={
"bucket": config["data"]["bucket"],
"object_path": f"{config['data']['object']}",
"artifact_name": f"{config['data']['raw_data']}",
"artifact_type": "raw_data",
"artifact_description": "Raw dataset from data store"
}
)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 if "split" in active_steps:
_ = mlflow.run(
hydra.utils.get_original_cwd(),
"split",
parameters={
"input_artifact": f"{config['data']['raw_data']}",
"test_size": config['modeling']['test_size'],
"random_seed": config['modeling']['random_seed'],
"stratify_by": config['modeling']['stratify_by'],
}
)
if __name__ == "__main__":
go()
./config.yaml
1
2
3
4
5
6
7
8 main:
project_name: "nyc_airbnb"
experiment_name: "random_forest_model"
steps: all
data:
bucket: "junda-mlops"
object: "dataset/training_data/"
raw_data: "raw_training_data.parquet"
1
2
3
4
5
6
7
8
9 modeling:
# Fraction of data to use for test (the remaining will be used for train and validation)
test_size: 0.2
# Fraction of remaining data to use for validation
val_size: 0.2
# Fix this for reproducibility, change to have new splits
random_seed: 42
# Column to use for stratification (use "none" for no stratification)
stratify_by: "none"
With this we have set up the split step and we can test run this. We can either run entire pipeline, or just the split
part. This is made possible because we pass raw_data.parquet:latest
as an argument to split
entry point. The :latest
tag means we will always retrieve the most recent version of the file. If we have multiple version of our wadnb artifact, we can also pass the specific version as tag, such as v0
for the first ever logged version of that particular artifact, or v1
for the second version, etc.
To run only this component step, use mlflow run . -P steps=split
. To run the entire pipeline, the command is mlflow run .
.
After the run is finished, check our wandb dashboard and see if a new artifact called trainval_data
and test_data
exists. Both of these will be passed to subsequent steps.
Develop train_model step
Let’s put in the logic for training our model. Create a new file for this.
1 | touch nyc_airbnb/train.py |
And paste in the following code.
./nyc_airbnb/train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172 import argparse
import json
import logging
import os
import shutil
import sys
from typing import Dict
import mlflow
import pandas as pd
import wandb
from sklearn.metrics import r2_score, mean_absolute_error
from sklearn.model_selection import train_test_split
sys.path.append(".")
from nyc_airbnb.utils.base_runner import BaseRunner
from nyc_airbnb.utils.pipeline import get_inference_pipeline
logging.basicConfig(
level=logging.INFO,
format="%(asctime)-15s %(levelname)s - %(message)s")
logger = logging.getLogger()
class TrainModelRunner(BaseRunner):
def __init__(self,
wandb_run,
label,
random_seed,
stratify_by,
val_size
):
super().__init__(wandb_run)
self.label = label
self.val_size = val_size
self.stratify_by = stratify_by
self.random_seed = random_seed
def train(self,
data: pd.DataFrame,
rf_config: Dict[str, float],
max_tfidf_features):
"""
Train a model by running fit() method of pipeline.
Args:
data: A DataFrame of training dataset
rf_config:
A configuration dict to be used as model parameters
max_tfidf_features:
hyper-param for tfidf preprocessor
"""
y = data[self.label]
X = data.drop(self.label, axis=1)
X_train, X_val, y_train, y_val = train_test_split(
X,
y,
test_size=self.val_size,
stratify=X[self.stratify_by],
random_state=self.random_seed
)
logger.info("Preparing pipeline")
lasso_pipe = get_inference_pipeline(
rf_config,
max_tfidf_features
)
logger.info("Training model")
trained_model = lasso_pipe.fit(X_train, y_train)
# training performance metric
y_pred = trained_model.predict(X)
r2 = r2_score(y, y_pred)
mae = mean_absolute_error(y, y_pred)
return r2, mae, trained_model
def persist_model(self, model, model_artifact_name: str):
persist_dir = f'{model_artifact_name}_dir'
# Remove if exists
if os.path.exists(persist_dir):
shutil.rmtree(persist_dir)
mlflow.sklearn.save_model(
model,
persist_dir,
)
self.log_model(
model_artifact_name,
"model_export",
"Pytorch lasso model export",
persist_dir)
if __name__ == "__main__":
# Process arguments
parser = argparse.ArgumentParser(description="Train the model")
parser.add_argument(
"trainval_artifact",
type=str,
help="Artifact containing the training dataset. It will be split into train and validation"
)
parser.add_argument(
"val_size",
type=float,
help="Size of the validation split. Fraction of the dataset, or number of items",
)
parser.add_argument(
"random_seed",
type=int,
help="Seed for random number generator",
default=42
)
parser.add_argument(
"stratify_by",
type=str,
help="Column to use for stratification",
default="none"
)
parser.add_argument(
"rf_config",
help="Random forest configuration. A JSON dict that will be passed to the "
"scikit-learn constructor for RandomForestRegressor.",
default="{}",
)
parser.add_argument(
"max_tfidf_features",
help="Maximum number of words to consider for the TFIDF",
default=10,
type=int
)
parser.add_argument(
"output_artifact",
type=str,
help="Name for the output serialized model"
)
args = parser.parse_args()
wandb_run = wandb.init(job_type="training_model")
with open(args.rf_config) as fp:
rf_config = json.load(fp)
# Log model config to wandb runs
wandb_run.config.update(rf_config)
# Run training
runner = TrainModelRunner(
wandb_run,
label=args.label
)
training_set = runner.retrieve_dataset_artifact(args.train_artifact)
r2, mae, TRAINED_MODEL = runner.train(training_set, rf_config, args.max_tfidf_features)
# Logging to wandb
logger.info(f'R2 score is {r2}')
logger.info(f'MAE loss is {mae}')
wandb_run.summary['Training r2'] = r2
wandb_run.log({
"Training mae": mae,
"Training r2": r2
})
# Persist model
logger.info('Exporting model')
runner.persist_model(TRAINED_MODEL, args.output_artifact)
sys.exit(0)
In this step, we are going to train our model on the training split of the data. We score the performance on the model on training data, and log the trained model artifact and the performance into wandb. Later on, we are going use the same trained model artfact to score to testing data. Doing this gave us several advantage:
- It safeguards us from data leakage. Remember that we split our dataset immediately after retrieving them from source, any cleaning/preprocessing we do in this step will only be applied to training split of the data.
- Scoring separately allows us to safeguard from overfitting. We might apply cross-validation in our training step to discover the most optimal combination of hyperparameters and preprocessing logic, and the same hyperparameter and preprocessing will be applied upon testing data that we haven’t seen at all during training. This will allow us to prepare our model to deal with new data in production.
We are also going to organise the source code in a way that is easy to maintain and extend. Here we are only going to retrieve training data and slap it into the training pipeline. The actual training and preprocessing logic will be built on different modules. This way, we may plug-in and plug-out any preprocessing logic or even swap out the model from logistic regression into gradient boosting, the training function here won’t care as long as it can get the pipeline object.
To achieve this, we need to create the get_inference_pipeline
function; it will return a scikit-learn compatible Pipeline
object. Pipeline
can assemble multiple estimators and transformers together. If we need to apply OneHotEncoding
, StandardScaler
and RandomForest
together, we put them into a Pipeline
and we can all fit
only once from the Pipeline
. The Pipeline
will be the ones handling fit
execution in sequence. When we want to save these fitted estimators together, we just need to save the Pipeline
.
Create the module to store our Pipeline
logic.
1 | touch nyc_airbnb/utils/pipeline.py |
Write the following code into the new file.
./nyc_airbnb/utils/pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110 import logging
import numpy as np
import pandas as pd
from sklearn.compose import ColumnTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder, FunctionTransformer
from sklearn.ensemble import RandomForestRegressor
from sklearn.pipeline import Pipeline, make_pipeline
def delta_date_feature(dates):
"""
Given a 2d array containing dates (in any format recognized by pd.to_datetime), it returns the delta in days
between each date and the most recent date in its column
"""
date_sanitized = pd.DataFrame(dates).apply(pd.to_datetime)
return date_sanitized.apply(lambda d: (d.max() - d).dt.days, axis=0).to_numpy()
logging.basicConfig(level=logging.INFO, format="%(asctime)-15s %(message)s")
logger = logging.getLogger()
def get_inference_pipeline(rf_config, max_tfidf_features):
# Let's handle the categorical features first
# Ordinal categorical are categorical values for which the order is meaningful, for example
# for room type: 'Entire home/apt' > 'Private room' > 'Shared room'
ordinal_categorical = ["room_type"]
non_ordinal_categorical = ["neighbourhood_group"]
# NOTE: we do not need to impute room_type because the type of the room
# is mandatory on the websites, so missing values are not possible in production
# (nor during training). That is not true for neighbourhood_group
ordinal_categorical_preproc = OrdinalEncoder()
######################################
# Build a pipeline with two steps:
# 1 - A SimpleImputer(strategy="most_frequent") to impute missing values
# 2 - A OneHotEncoder() step to encode the variable
non_ordinal_categorical_preproc = make_pipeline(
SimpleImputer(strategy="most_frequent"),
OneHotEncoder()
)
######################################
# Let's impute the numerical columns to make sure we can handle missing values
# (note that we do not scale because the RF algorithm does not need that)
zero_imputed = [
"minimum_nights",
"number_of_reviews",
"reviews_per_month",
"calculated_host_listings_count",
"availability_365",
"longitude",
"latitude"
]
zero_imputer = SimpleImputer(strategy="constant", fill_value=0)
# A MINIMAL FEATURE ENGINEERING step:
# we create a feature that represents the number of days passed since the last review
# First we impute the missing review date with an old date (because there hasn't been
# a review for a long time), and then we create a new feature from it,
date_imputer = make_pipeline(
SimpleImputer(missing_values=None, strategy='constant', fill_value='2010-01-01'),
FunctionTransformer(delta_date_feature, check_inverse=False, validate=False)
)
# Some minimal NLP for the "name" column
reshape_to_1d = FunctionTransformer(np.reshape, kw_args={"newshape": -1})
name_tfidf = make_pipeline(
SimpleImputer(missing_values=None, strategy="constant", fill_value="imputed name"),
reshape_to_1d,
TfidfVectorizer(
binary=False,
max_features=max_tfidf_features,
stop_words='english'
)
)
# Let's put everything together
preprocessor = ColumnTransformer(
transformers=[
("ordinal_cat", ordinal_categorical_preproc, ordinal_categorical),
("non_ordinal_cat", non_ordinal_categorical_preproc, non_ordinal_categorical),
("impute_zero", zero_imputer, zero_imputed),
("transform_date", date_imputer, ["last_review"]),
("transform_name", name_tfidf, ["name"])
],
remainder="drop", # This drops the columns that we do not transform
)
processed_features = ordinal_categorical + non_ordinal_categorical + zero_imputed + ["last_review", "name"]
# Create random forest
random_forest = RandomForestRegressor(**rf_config)
######################################
# Create the inference pipeline. The pipeline must have 2 steps: a step called "preprocessor" applying the
# ColumnTransformer instance that we saved in the `preprocessor` variable, and a step called "random_forest"
# with the random forest instance that we just saved in the `random_forest` variable.
# HINT: Use the explicit Pipeline instead of make_pipeline constructor to leverage named step
sk_pipe = Pipeline(
steps=[
("preprocessor", preprocessor),
("random_forest", random_forest)
]
)
return sk_pipe, processed_features
Here we declare all preprocessing logic for each data type, ordinal categorical, nominal categorical, numeric, temporal, and textual. We strap all of these with ColumnTransformer
, and the resulting transformer can be put into a Pipeline
step. The final pipeline just needs to combine the preprocessor
step and random_forest
model.
As we can see, we build the steps in a declarative way, so we can change any part of the steps and it can be called by our train
entry point as long as we return Pipeline
from here.
Now that we have created the entry point for training, we just have to call it from our main entry point. Let’s start by making the entry point for training in our MLproject.
./MLproject
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 name: nyc_airbnb
conda_env: conda.yml
entry_points:
main:
parameters:
steps:
description: Comma-separated list of steps to execute (useful for debugging)
type: str
default: all
hydra_options:
description: Other configuration parameters to override
type: str
default: ''
command: "python main.py main.steps=\\'{steps}\\' $(echo {hydra_options})"
get_data:
parameters:
bucket:
description: OSS bucket where data is stored
type: string
object_path:
description: OSS object of dataset
type: string
artifact_name:
description: Name for the output artifact
type: string
artifact_type:
description: Type of the output artifact. This will be used to categorize the artifact in the W&B interface
type: string
artifact_description:
description: A brief description of the output artifact
type: string
command: "python nyc_airbnb/get_data.py
{bucket}
{object_path}
{artifact_name}
{artifact_type}
{artifact_description}"
split:
parameters:
input_artifact:
description: Artifact to split (a CSV file)
type: string
test_size:
description: Size of the test split. Fraction of the dataset, or number of items
type: string
random_seed:
description: Seed for the random number generator. Use this for reproducibility
type: string
default: 42
stratify_by:
description: Column to use for stratification (if any)
type: string
default: 'none'
command: "python nyc_airbnb/split_train_test.py
{input_artifact}
{test_size}
{random_seed}
{stratify_by}"
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 train:
parameters:
label:
description: Label column name
type: string
trainval_artifact:
description: Train dataset
type: string
val_size:
description: Size of the validation split. Fraction of the dataset, or number of items
type: string
random_seed:
description: Seed for the random number generator. Use this for reproducibility
type: string
default: 42
stratify_by:
description: Column to use for stratification (if any)
type: string
default: 'none'
rf_config:
description: Random forest configuration. A path to a JSON file with the configuration that will
be passed to the scikit-learn constructor for RandomForestRegressor.
type: string
max_tfidf_features:
description: Maximum number of words to consider for the TFIDF
type: string
output_artifact:
description: Name for the output artifact
type: string
command: "python nyc_airbnb/train.py
{label}
{trainval_artifact}
{val_size}
{random_seed}
{stratify_by}
{rf_config}
{max_tfidf_features}
{output_artifact}"
Now we can call this from main.py
.
./main.py
1
2
3
4
5
6
7
8
9
10 import json
import mlflow
import tempfile
import os
import wandb
import hydra
from omegaconf import DictConfig
from dotenv import load_dotenv
load_dotenv()
1
2
3
4 _steps = [
'download',
'split'
]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# This decorator automatically reads in the configuration
def go(config: DictConfig):
# Setup the wandb experiment. All runs will be grouped under this name
os.environ["WANDB_PROJECT"] = config["main"]["project_name"]
os.environ["WANDB_RUN_GROUP"] = config["main"]["experiment_name"]
# Steps to execute
steps_par = config['main']['steps']
active_steps = steps_par.split(",") if steps_par != "all" else _steps
# Move to a temporary directory
with tempfile.TemporaryDirectory() as tmp_dir:
if "download" in active_steps:
# Download file and load in W&B
_ = mlflow.run(
hydra.utils.get_original_cwd(),
"get_data",
parameters={
"bucket": config["data"]["bucket"],
"object_path": f"{config['data']['object']}",
"artifact_name": f"{config['data']['raw_data']}",
"artifact_type": "raw_data",
"artifact_description": "Raw dataset from data store"
}
)
if "split" in active_steps:
_ = mlflow.run(
hydra.utils.get_original_cwd(),
"split",
parameters={
"input_artifact": f"{config['data']['raw_data']}",
"test_size": config['modeling']['test_size'],
"random_seed": config['modeling']['random_seed'],
"stratify_by": config['modeling']['stratify_by'],
}
)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 if "train" in active_steps:
# NOTE: we need to serialize the random forest configuration into JSON
rf_config = os.path.abspath("rf_config.json")
with open(rf_config, "w+") as fp:
json.dump(dict(config["modeling"]["random_forest"].items()), fp) # DO NOT TOUCH
# NOTE: use the rf_config we just created as the rf_config parameter for the train_random_forest
_ = mlflow.run(
os.path.join(hydra.utils.get_original_cwd()),
"train",
parameters={
"label": config["data"]["label"],
"trainval_artifact": f"{config['data']['training_data']}:latest",
"val_size": config["modeling"]["val_size"],
"random_seed": config["modeling"]["random_seed"],
"stratify_by": config["modeling"]["stratify_by"],
"rf_config": rf_config,
"max_tfidf_features": config["modeling"]["max_tfidf_features"],
"output_artifact": "random_forest_export",
},
)
if __name__ == "__main__":
go()
Before we finish the training part and test run this, we need to add the configuration in config.yaml
.
./config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 main:
project_name: "nyc_airbnb"
experiment_name: "random_forest_model"
steps: all
data:
bucket: "junda-mlops"
object: "dataset/training_data/"
raw_data: "raw_training_data.parquet"
training_data: "trainval_data.parquet"
label: "price"
modeling:
# Fraction of data to use for test (the remaining will be used for train and validation)
test_size: 0.2
# Fraction of remaining data to use for validation
val_size: 0.2
# Fix this for reproducibility, change to have new splits
random_seed: 42
# Column to use for stratification (use "none" for no stratification)
stratify_by: "none"
1
2
3
4
5
6
7
8
9
10
11
12
13
14 max_tfidf_features: 15
# NOTE: you can put here any parameter that is accepted by the constructor of
# RandomForestRegressor. This is a subsample, but more could be added:
random_forest:
n_estimators: 100
max_depth: 15
min_samples_split: 4
min_samples_leaf: 3
# Here -1 means all available cores
n_jobs: -1
criterion: mae
max_features: 0.5
# DO not change the following
oob_score: true
Now we have everything ready to test run our training step. Same as previous example, we can run using mlflow cli.
1 | mlflow run . -P steps=train |
If we look at wandb.ai run summary, we are going to see training score of our model.
Not only that, we can also see the hyper parameter we use to get that score, the datasets we consume, and their respective version. This is going to be very useful when we want to do offline evaluation of our model.
The progress up to this point can be accessed from the accompanying repository on part-2
branch.
Hope by this point we have better understanding on how to implement reproducible training pipeline. Thanks for reading!